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PREDICTION OF COMPLIANT WALL DRAG REDUCTION - PART I 

Steven A. Orszag 
Cambridge  Hydrodynamics, Inc. 
Cambridge,  Massachusetts 02139 

1. INTRODUCTION 

This   repor t   d i scusses   the   formula t ion ,   deve lopment ,  

and some app l i ca t ions   o f  a numerical   model   of   the   effect   of  

compliant w a l l s  on  turbulent   boundary  layer   f lows.   Since 

sk in - f r i c t ion   d rag   accoun t s  €or abou t   ha l f   t he   d rag  on 

l o n g - h a u l   a i r c r a f t ,   a n y   r e d u c t i o n   i n   t h i s   d r a g  is of 

grea t   impor tance   in   improving   fue l  economy and a i r c r a f t  

range as w e l l  a s  increasing  payload  eff ic iency  and  decreasing 

environmental   pol lut ion.  

The c u r r e n t  s ta te  of exper imenta l   and   theore t ica l  

r e sea rch  on  compliant walls and t h e i r   e f f e c t   o n   t u r b u l e n t  

boundary  layers  has  been  reviewed by Fischer,   Weinstein,  

Ash & Bushnelll  and  by  Bushnell,  Hefner & Ash . A survey 

of v a r i o u s   a l t e r n a t i v e   t e c h n i q u e s   f o r   a i r c r a f t   d r a g   r e d u c t i o n  

has   been   g iven   recent ly  by Hefner,  Bushnell, Whitcomb,  Cary 

& Ash ( R e f .  2 is  reproduced as a c h a p t e r   i n  R e f .  3). In  

summary, t h e   c u r r e n t  Ltate of  both  experiments  and  theory 

is inconclusive.  Some experiments show a s u b s t a n t i a l   e f f e c t  

of compliant wal ls  on  drag,   o thers   do  not .  It is n o t  

clear tha t   conven t iona l  materials can serve as s u i t a b l e  

compliant  boundaries t o  give  drag  reduct ion,   though  there  
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do seem t o  be  some a t t r a c t i v e   p o s s i b i l i t i e s . .  It is only  

clear t h a t   d r a g   r e d u c t i o n  by  compliant wal ls  is n o t  as 

s imple a phenomenon as may be   sugges ted   by   cursory   cons idera t ion  

of the   hydrodynamical   eff ic iency  of   dolphins .   Evident ly  I 

t he   dynamica l   cha rac t e r i s t i c s  of t h e  w a l l  are c r u c i a l   i n  

determining  whether   drag  reduct ion or  drag  enhancement w i l l  

r e su l t ;   t he   r e sponse   o f  t h e  wall  must be matched i n  some 

dynamical  sense still t o  be e l u c i d a t e d   t o  t h e  c h a r a c t e r i s t i c s  

of the   tu rbulen t   boundary   l ayer   over  it. One of t h e  p r i n c i p a l  

purposes of t h e   p r e s e n t  work i s  t o   h e l p   i n   i d e n t i f y i n g  

t h e   n a t u r e  of t h e   e f f e c t   o f  the wall   motions on t h e  drag  

SO t h a t   d e s i g n  of su i tab le   wal l s   can   be   expedi ted .  

There   have   been   severa l   theore t ica l   inves t iga t ions  

o f  turbulent  boundary  layer  f lows  over moving walls; a 

survey is  g iven   in   Refs .  2,3. One of t h e  most a t t r a c t i v e  

ideas’ fo r   exp la in ing   d rag   r educ t ion  by compliant   wal ls  

is t h a t   t h e  w a l l  i n f luences  t h e  t u r b u l e n t  b u r s t  phenomenon 

by providing a p r e s s u r e   f i e l d   t h a t   t e n d s  t o  i n h i b i t  b u r s t s  

when they  normally  occur. T h i s  idea leads t o   s i g n i f i c a n t  

q u a l i t a t i v e   u n d e r s t a n d i n g   o f   t h e   e f f e c t  of compliant   wal ls .  

I n   t h e   p r e s e n t   r e p o r t ,  w e  discuss  a numerical  model based 

on the  above idea and r e p o r t   q u a n t i t a t i v e  tests of  it as 

a mechanism of compliant w a l l  drag  reduct ion.  

In  Sec. 2 ,  w e  discuss   the  proposed mechanism of 

compliant w a l l  d rag   reduct ion .   In  Sec. 3 ,  we d i s c u s s  t h e  

numerical model of the nean  flow  motion.  Then, i n  Sec. 4 ,  
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we.d i scuss   t echn iques   fo r   t he   i nves t iga t ion  o f  t h e   s t a b i l i t y  

of t h e   p r e d i c t e d  mean f low  p ro f i l e s   and   fo r   t he   p red ic t ion  

of burs t   f requency .   In  Sec. 5 ,  w e  p r e s e n t   r e s u l t s   o f  the 

p r e s e n t  model fo r   t u rbu len t   boundary   ' l aye r .   ve loc i ty   p ro f i l e s  

d u r i n g   t h e . b u r s t  phenomenon a n d   u s e   t h e s e   r e s u l t s   t o   f i x  

var ious  parameters   of   the   model 'by  comparison  with  experimental-  

r e s u l t s .  Then, i n  Sec. 6 ,  w e  pre , sen t   numer ica l   resu l t s  

f o r   t h e  combined  mean-flow  and s t a b i l i t y   a n a l y s i s ' o f   t h e  

turbulent   boundary  layer   f low  over  a compliant w a l l .  "In 

t h i s   a n a l y s i s ,  w e  use a c rude   bu r s t   p red ic to r   based  on 

ampl i f i ca t ion  factors. F ina l ly ,   i n   Sec .7 ,  w e  summarize t h e  

c u r r e n t  s ta te  of   research  on the  turbulence  f low model 

i nves t iga t ed   he re .  

. ,  
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2. A .PROPOSED  MECHANISM OF COMPLIANT WALL DRAG .REDUCTION 

In t h e  l as t  decade,  there  has  accumulated a weal th  

of   exper imenta l   ev idence   tha t   the   p rocess  of bu r s t   fo rma t ion  

in turbulent   boundary  layer  flaws is not   completely random, 

b u t  r a t h e r   c a n  be c o r r e l a t e d   w i t h  a set of reasonably w e l l -  

ordered  dynamical  events.  Thus, a p laus ib le   coherent   sequence  

of events   for   formation  and  regenerat ion of b u r s t s  i s  as 

fol lows . 5 - 7 .  

1. 'Old' burs t s   p roduce  a l a rge   adverse   p ressure   pu lse  

t h a t  moves a t  a speed  of  roughly 0.8U- and has an  amplitude 

o f ' r o u g h l y  3p-, where p k s  i s  t h e  rms w a l l  p r e s s u r e   f l u c t u a t i o n  

i n t e n s i t y .  5 

2. This   adverse   g rad ien t  retards the   f low  near   the  

wa.11 and  produces a low-speed s t r e a k .  

3.  A new b u r s t  is  c r e a t e d  when t h e  low-speed s t r e a k  

creates h i g h l y   i n f l e c t i o n a l   v e l o c i t y   p r o f i l e s   i n  t h e  wa l l  

region.  

4.  The f a v o r a b l e   p a r t  of the  l a rge - sca l e   p re s su re   pu l se  

due t o  p rev ious   bu r s t s   t ends  t o  a s s i s t   t h e  new b u r s t  i n  

'sweeping'  out away from t h e  w a l l .  Most of t h e  Reynolds 

stress and turbulence  product ion  occurs   during t h e  b u r s t  

and  sweep p r o c e s s ,   w i t h   r e l a t i v e l y  l o w  t u r b u l e n c e   a c t i v i t y  

between b u r s t s .  

5. The 'new' b u r s t s  se t  up cond i t ions  similar t o  t h a t  

d i s c u s s e d   i n  1. above  and t h e  whole  sequence of events  is  

repeated.  
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Bushnell'  has  proposed tha t  t h e  above  sequence  of 

events   can   be   used  t o  formulate  a quan t i t a t ive   f l ow model 

for t h e  p r e d i c t i o n  of pr0pert ie .s  bf turbulent  boundary 

l a y e r s .  The i d e a  i s  t o  impose the experimentally  measured 

pressure   pu lse   due  t o  'o ld '  b u r s t s ,  t o  model t h e  background 

turbulence  between  bursts   using a crude  turbulence  model,  

and then  t o  c a l c u l a t e   t h e   i n f l e c t i o n a l   m e a n - v e l o c i t y   p r o f i l e s  

produced by t h e   p r e s s u r e   p u l s e   u s i n g  a two-dimensional  Navier- 

Stokes  equation  computer  code.  Finally,   the  occurence of 

new b u r s t s  c a n   b e   i n v e s t i g a t e d   i n   t h i s   f l o w  model by 

c a l c u l a t i n g  t h e  growth of Tollmien-Schlicting waves  and 

us ing  an  amplitude-growth  cri terion8 t o  p r e d i c t  t h e  

onse t  of new b u r s t s .  

Bushnel l ' s   tu rbulen t   boundary   l ayer  model a l s o  

sugges ts  a mechanism for  drag  reduction  by  compliant walls. 

I f  the  wavelength of the  w a l l  motions is small ( a t  most t h e  

Wavelength: of- t h e ,  imposed p res su re   pu l se )  , t h e  wall  motion 

c a n   i n t e r r u p t   t h e  feedback loop  outl ined  above somewhere 

between  steps 2. and 4 .  I f  t h e  short  wavelength  wall  motions 

can  delay  burst   formation  through t h e  adve r se   pa r t  of t h e  

imposed pressure   pu lse   then  the  f avorab le   pa r t   o f   t he  imposed 

p res su re   pu l se  may i n h i b i t   b u r s t i n g .   I n   t h i s  case, turbulence  

production  and  turbulent  boundary-layer  drag are decreased. 

The p r e s e n t  work is motivated by t h e  above ideas of  

Bushnell .  The  model seeks t o  de te rmine   quan t i t a t ive ly  

whether rea l i s t ic  w a l l  motions  and  imposed  pressure  pulses 

i n t e r a c t   i n  a time-dependent  environment i n  such a way as 

t o  decrease  burst   f requency  and w a l l  drag.  The p r e s e n t  
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.work concentrates   on the numerical   s tudy of t h e  mean 

ve loc i ty   p ro f i l e s   p roduced  by the imposed p res su re  

pulse .  .We use  a r e l a t i v e l y   c r u d e   t e c h n i q u e  t o  i n v e s t i g a t e  

t h e   s t a b i l i t y  of t h e   r e s u l t i n g   p r o f i l e s .  (see Sec. 4 ) .  

Only a limited number of d i f f e r e n t  cases have  been  examined 

to  d a t e  and the  conclusions  regarding  the  f low model are 

n o t  y e t   c e r t a i n .  It seems t h a t   i f  the wavelength of t h e  

w a l l  motions i s  la rge   (of  order the l eng th  of t h e  imposed 

p r e s s u r e   p u l s e ) ,   t h e r e  is no  drag  reduct ion.  However, i f  

the  wavelength of the w a l l  motions is  very small ( s h o r t e r  

t h a n   t h e   s u b l a y e r   t h i c k n e s s ) ,   s u b s t a n t i a l   d r a g   r e d u c t i o n  may 

occur  (although  our  computer  runs a t  such  short   wavelengths  

may have ju s t   marg ina l   accu racy ) .   Fu tu re  work must t e s t  

the  f low model f u r t h e r ,   p a r t i c u l a r l y   w i t h   r e s p e c t  t o  

intermediate  wavelength wall  motions  and more accurate flow 

s t a b i l i t y   c a l c u l a t i o n s .  

6 
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3. NUMERICAL MODEL FOR THE MEAN FLOW 

In this Section, we discuss the numerical techniques 

used to solve the equations of Bushnell's turbulent boundary 

layer model discussed in Sec. 2. We solve the two-dimensional 

Navier-Stokes equations with a background turbulence model, 

inflow-outflow boundary conditions, and imposed large-scale 

pressure pulse at 'infinity'. The resulting mean-flow 

profiles show the effect of the pressure pulse in distorting - 

(retarding) the mean profiles and in producing inflectional' 

profiles. 

The two-dimensional Navier-Stokes equations for 

incompressible flow are 

at + V - V V  = - Vp + COT + 3 af -+ +-+ -+ 

% 

where (x ,y,t) is the two-dimensional velocity field, 

p(x,y,t) is the pressure, T is  'the stress tensor, and f 

is an imposed external force. We solve (3.1) in a channel: 

.Oz XL L and 0 1. y 5 H. In a typical run, the values 

of L and H are L = 600 and H = 200 in units non-dimensionalized 

by the length V/U, where UT-is the friction velocity and v is 

the kinematic viscosity. 

+ 
% 

We approximate the stress tensor T by retaining only 
2 

its x-y corqponent: 

where v is  the viscosity, U  is the mean velocity, and 

u' and v' are  the x and y components, respectively, of the . .  . 
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- . 
, v e l o c i t y   f l u c t u a t i o n s .  The  Reynolds stress, "u'v', is 

- 
then evaluated  by Van Driest's empirical   formula9 so t h a t  

where  the  constant  A is chosen t o  be .04 i n  agreement  with 

experimental  measurements of turbulent  boundary-layer mean- 

v e l o c i t y   p r o f i l e s .  The cons t an t  B is an  ad  hoc  correction 

t o  the   u sua l  Van Driest formula   tha t   accounts  €or t h e  f a c t  

tha t   the   tu rbulence   l eve l   be tween  burs t s  is  small; a t y p i c a l  

va lue  for  the background  turbulence scale cons tan t  B i n   o u r  

c a l c u l a t i o n s  i s  8 = .OS. 

Boundary cond i t ions  

The boundary  conditions t o  be  imposed  on  (3.1-2) r e q u i r e  

more d e t a i l e d   d i s c u s s i o n .  Each of the  four   boundaries  x = 0 ,  L, 

y = 0 ,  H poses i ts  own special kind of boundary  condition  problem. 

L e t  us begin by a b r i e f   a n a l y s i s  of boundary  condi t ions  for  

(3.1-2). We do t h i s  by a n   e n e r g y   a n a l y s i s   t h a t   e s t a b l i s h e s  

a undqueness  theorem fo r  the  Navier-Stokes  equations.  

Consider t w o  f lows  G1(x,y,t)   and  G2(x,y,t)   that   both 

s a t i s f y   t h e  same boundary  conditions  and t h a t  both s a t i s f y  

(3.1-2) I n   t h i s  case v ( x , y , t )  = v l ( x , y , t )  - v 2 ( x , y , t )  

s a t i s f i e s   t h e   e q u a t i o n s  

-+ + + 

. 
where p = p1 - p2  and T = T - T It f o l l o w s   t h a t   t h e  * 51 % 2 *  
per turbat ion  energy E (t) de f ined  by 
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E ( t )  = %ID v dx 2 

satisfies 

- V *  (v*V)v2 dx + ID u 2 ds + + + +  + 

D 

where  aD  is the  boundary of  the  computational  domain D, 
+ 
nout is  the  outward  normal on  aD, and dC is  the  surface  element 

on aD. It follows  that  if 

and 

(i) p  is  specified on  all of D and v=nout is + *  

specified  on  all  of  aD  where v*nout< 0 and T is  specified  on  all of'.D: 

or (ii)  v.nout  is  specified on  all of D  and f is  specified 
at  all  points  where v*nout< 0 ,  then 

+ +  

+ +  

+ +  

Therefore, if either of conditions  (i)  or  (ii)  holds 

at  each  point  of  the  boundary  of  the  computational  domain, 

the  error  energy  E(t)  grows at  most  exponentially  with t, 

SO the  problem  is  well  posed. 

Using  the  above  analysis, we can  specify  physically 

interesting  boundary  conditions  for  Bushnell's  turbulent: 

boundary  layer  model.  We  treat  the  four  boundary  surfaces 

individually. 

x = o  

Here  the  flow  is  assumed to enter  the  computational 
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domain. Since  the  boundary is an  inflow  boundary, it is 

phys ica l ly   reasonable  t o  assume t h a t   b o t h  components of t h e  

v e l o c i t y   f i e l d  are known a t  x = 0. Thus, w e  impose t h e  

inf low  boundary   condi t ions   tha t   u (Q,y , t )   and   v(O,y , t )   a re  

both  known f o r  a l l  y and t. 

X = H .  

This  boundary is an  outflow  boundary.  Since  the  only 

non-vanishing  component of the Van Driest Reynolds stress 

t e n s o r  (3.3) i s  T it fol lows  that   the   Navier-Stokes 

equat ions  (3.1-2) a r e   p a r a b o l i z e d   i n   t h e  x d i rec t ion .   The re fo re ,  

a c c o r d i n g   t o  ( i),  w e  need  only  impose  boundary  conditions on 

XY 

Boundary condi t ions  l i k e  (3.4) a r e  known t o  have  small 

upstream  inf luence so they  do n o t   d i s t u r b  t h e  main region 

of computation which is away from t h e  downstream  boundary 

x = L. 

y * o  

This  is t h e   l o c a t i o n  of t he   compl i an t   wa l l .   I f   t he  

w a l l  were r i g i d ,  w e  would  impose the  boundary  condi t ions 

v(x ,O, t )  = 0 (3.5) 

10 



There are t w o  effects of a moving  boundary a t  y = 0 .  

F i r s t ,   t h e  boundary  location is s h i f t e d  t o  y = q ( x , t ) .  

Second, t h e  w a l l  motion as a func t ion  of t r e q u i r e s  t h e  

v e l o c i t y  t o  be nonvan i sh ing ,a t  the  w a l l .  The proper  

boundary  condition a t  the  w a l l  is  t h a t   t h e r e  is n o   r e l a t i v e  

motion  of   the w a l l  and the  f l u i d  a t  t h e   w a l l - f l u i d   i n t e r f a c e .  

W e  impose  boundary cond i t ions  a t  t he  moving w a l l  by 

assuming l i n e a r i z e d  w a l l  motion. T h i s  assumption is a 

great s i m p l i f i c a t i o n  and is  j u s t i f i e d   b e c a u s e   t h e  w a l l  

mot ions   o f   in te res t  are n o t   l a r g e  compared t o  the sub4ayer 

th ickness .  It  follows tha t  the v e r t i c a l  w a l l  motion is  

where U = Dx/Dt is t h e  component of w a l l  motion i n  the 

d i r e c t i o n   t a n g e n t  t o  the w a l l .  Eq. (3.6) f o r   t h e   v e r t i c a l  

w a l l  motion v is  t r u e   n o n l i n e a r l y .   L i n e a r i z a t i o n  of t h e  

wall motion  implies t h a t  a l l  q u a n t i t i e s   i n  (3.6) may be 

eva lua ted  a t  t h e  und i s tu rbed   wa l l   l oca t ion  y = 0. 

I n  order t o  comple t e   t he   spec i f i ca t ion  of boundary 

condi t ions  a t  y = 0 ,  it i s  n e c e s s a r y   t o  know U ( x , t ) ,  t h e  

t a n g e n t i a l  component of t h e  w a l l  motion. T h i s  q u a n t i t y  

depends  on the phys ica l  model of t h e  compliant w a l l ,  and 

must be s p e c i f i e d   i n   a d d i t i o n  t o  the v e r t i c a l  wall  motion 

n ( x , t ) .   I n  the p r e s e n t  work, w e  do  not   determine the 

w a l l  m o t i o n s   s e l f - c o n s i s t e n t l y ,   i n  the  sense  t h a t  w e  impose 

q ( x , t )  and do not   de te rmine  the effects of w a l l  p r e s su re  

f luc tua t ions   due  t o  the  turbulent  boundary  f low on t h e  motion 

of t h e  w a l l .  
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Most of t h e  materials of c u r r e n t   i n t e r e s t  for  compliant 

wall drag   r educ t ion   app l i ca t ions  are f l e x i b l e  materials t h a t  

can ' s t r e t c h '   i n   t h e   y - d i r e c t i o n   b u t   h a v e  l i t t l e  lateral  

freedom f o r  movement in   t he   x -d i r ec t ion .   The re fo re ,   because  

of t h e   l a c k  of s p e c i f i c   i n f o r m a t i o n  on t h i s   p o i n t ,  w e  have 

chosen t h e  w a l l  boundary  condi t ion  U(x, t )  = 0. Admittedly, 

this is  ove r s impl i f i ed ,   bu t  a d e t a i l e d  model of t h e   w a l l  

is necessary  before  this  boundary  condition  can  be  improved. 

It is n o t   g e n e r a l l y   r e c o g n i z e d   t h a t   b o t h   q ( x , t )  and 

U(x,t)   must  be  specified t o  de te rmine   the  wal l  motion. 

However, cons ider   the   s imple  w a l l  motion y = q ( t ) ,  independent 

of x. The motion  of  the w a l l  i n  i ts  p lane  y = q ( t )  can 

be a r b i t r a r y  and the proper   tangent ia l   boundary  condi t ions 

axe 

u(x,rl , t)  = U ( x , t )  

' y '=' H 

The boundary  conditions imposed a t  t h e  top   of  t he  

l a y e r  y = H are t h e  most unusual,  and t h e  most d i f f i c u l t  

t o  g e t   r i g h t  (see b e l o w ) .   I n   o r d e r   t o  model. t he   l a rge -  

scale p res su re   pu l se  due t o  o l d   b u r s t s ,  w e  want t o  impose 

the   va lue  of the   p re s su re   p (x ,H , t )  a t  t h e  t o p  of t h e  

layer.  According t o  ou r   ana lys i s  of boundary  conditions, 

t h i s   o b v i a t e s  t h e  need t o  impose the   ve r t i ca l   (no rma l )  

component of ve loc i ty   v (x ,H , t l . a t   an   ou t f low  po in t .  

However, on physical  grounds w e  expec t  t h e  magnitude 

of the  normal   veloci ty  a t  the  t o p  of t h e   l a y e r  t o  have 

profound  e f fec ts  on o u r   a b i l i t y  t o  model t h e   b u r s t i n g  

12 



process. In fact, we have found by numerical experimentation 

with Bushnell's model (see Sec. 5) that  there is extreme 

sensitivity of the model to the normal component of velocity 

at y - H. Therefore, we. have assumed as a crude model of 

this effect that there is uniform inflow at all points of 

the boundary y - H of magnitude -V: 

v(x,H,t) = -V (3.7) 

where V is non-negative. Since the boundary y =H is now 

an inflow boundary, it seems to be  also necessary to 

specify u(x,H,t). However, it is not difficult to show 

that this would overspecify the boundary conditions at y = H 

because u(O,y,t) is specified. 

In computations with rigid walls, the imposition of 

the boundary conditions that p(x,H,t)  and  v(x,H,t) are 

specified has seemed to be satisfactory, except for some 

slight difficulty near the  intersection'of,the outflow 

boundary x = H and the lid y =L: this difficulty due to a 

very thin outflow boundary layer was circumvented by introducing 

additional dissipation locally near x = L, y = H in the 

numerical computations. However, in some recent computations 

with compliant walls  with wavelengths intermediate between 

the sublayer thickness and the pressure pulse wavelength, we 

have encountered numerical instability that appears to be due 

to the  top boundary conditions. This difficulty is  still 

under active investigation, but it should not affect in any 

way  the results presented in Sects. 5-6. 

13 



Numerkal methods 

We solve (3.1-2) wi th   the   boundary   condi t ions  

discussed  above  using a mixed s p e c t r a l - f i n i t e   d i f f e r e n c e  

method. The v e r t i c a l   ( y )   d i r e c t i o n  i s  re so lved   u s ing  

expans ions   i n  Chebyshev polynomia ls ,   whi le   the   x -d i rec t ion  

is reso lved   us ing  a second-order   s taggered-gr id   f in i te  

d i f f e r e n c e  scheme.  Thus, w e  r e p r e s e n t   t h e   v e l o c i t y  f ie ld  

by 
. .  N 

n=O 
G(jAx,y, t )  = C Zn(jAx,t)Tn(2y/H-l)  

where Ax is t h e   g r i d   s e p a r a t i o n  i p  x and  Tn(y) is the 

Chebyshev  polynomial  of  degree  n,  defined  by 

Tn(cos e )  = cos ne . 
A review of s p e c t r a l  methods  and f i n i t e - d i f f e r e n c e  methods 

used  here as been  given elsewhere?"'l2 L e t  u s   j u s t  summarize 

he re  some of the impor t an t   p rope r t i e s   o f  these methods: 

i) The use   o f  Chebyshev  polynomials i n  y i s  i n f i n i t e -  

o r d e r   a c c u r a t e ,   i n  t h e  s e n s e   t h a t  errors go t o  z e r o  faster 

than any f i n i t e  power of 1/N as N + 00 . 
ii) The use  of  Chebsyhev  polynomials i n  y y i e l d s   e f f i c i e n t  

c a l c u l a t i o n s  i f  use  is  made of fas t  Four ie r   t ransforms.  

iii) Chebyshev  polynomials allow accura t e   r e so lu t ion   o f  

boundary   l ayers ;   typ ica l ly ,  i f  t h e r e  are boundary  layers 

of th ickness  E , they  can  be  resolved  using  only I/& polynomials. 

iv) The use  of a s t a g g e r e d   g r i d   i n   t h e   x - d i r e c t i o n   g i v e s  

resu l t s   roughly   equiva len t  t o  those   ach ieved  by non-staggered 

g r ids   w i th  twice t h e   s p a t i a l   r e s o l u t i o n .  

14 



v) The solution of the Poisson  equation for the 

pressure field p  is accomplished by fast Fourier transform 

in x and then reduction of the equations for  the y-Chebsyhev 

coefficients to a tridiagonal system of equations. The 

resulting tridiagonal system can be solved efficiently 

using the LU-factorization algorithm in only order N 

operations. After Fourier transformation in x, the Poisson 

equation for the pressure takes the form  of the system 

of uncoupled two-point boundary value problems 

a”p - k2p = f (k,y) 
dy2 

(.3.9) 

When p is expanded in  a Chebyshev series in y, the resulting 

equations for the Chebyshev coefficients pn(k) in the expansion 
N 

n= 0 
P(kry) = pn(k)Tn(Y) (3.10) 

are given in the tau approximation by 12 

The boundary conditions become 

LC-1) n pn = A 

Cpn = B 

n 2  
(3.12) 

The tridiagonal system (3.11-12) is essentially diagonally 

dominant so that LU-decomposition is numerically well 

conditioned. 
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vi )  We use Adams-Bashforth time d i f f e r e n c i n g  of t h e  

nonl inear  terms, toge ther   wi th  a semi-implicit t i m e -  

d i f f e renc ing  scheme f o r   t h e   d i f f u s i v e  terms of   t he  

Van Driest Reynolds stress and f o r   t h e   i n f l o w  terms 

a t  y = 0 and  y = H. Because t h e  Chebyshev-polynomial 

expansions  have so much r e s o l u t i o n  a t  t h e   t o p  and t h e  

bottom of the  channel ,   they would g ive   ex t r eme ly   s t r ingen t  

t ime- s t ep   r e t r i c t ions  on t h e  Adams-Bashforth  scheme. We 

W o i d . t h i s   d i f f i c u l t y  by a semi- implici t  method i n  which 

t h e  terms t h a t  would c a u s e   t h e   t i m e - s t e p   r e t r i c t i o n s   t o  be severe  

. are t r ea t ed   imp l i c i t l y ,   t he reby   avo id ing   t he  time s t e p  

r e 8 t r i c t i o n s .  Detail6 of this process  are g iven   i n  R e f s .  12-13. 

For the  present  problem,  the terms tha t   g ive   unreasonable  

t ime-s t ep   r e s t r i c t ions  are j u s t  t h e   d i f f u s i v e  tern and t h e  

terms representing  advection  through  the  top  and  bottom 

boundaries.  These terms a r e   e a s i l y   t r e a t e d   s e m i - i m p l i c i t l y  

by sub t r ac t ing  from  both sides of   (3 .1)   constant   coeff ic ient  

d i f f u s i v e  and  convective terms t h a t  bound the  troublesome 

terms!2 These sub t r ac t ed  terms a r e   e a s i l y   t r e a t e d   i m p l i c i t l y  

because  they are c o n s t a n t   c o e f f i c i e n t  terms. 

v i i )  The code is a lso   formula ted   in   such  a way t h a t  

a moving coord ina te   sys tem  in  x can  be  used as an  option. 

This   opt ion is not  used,  however, i n   t h e   c a l c u l a t i o n s   r e p o r t e d  

i n  Sects. 5-6. 
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4.' NUMERICAL METHODS FOR STABILITY CALCULATIONS 

Once t h e  mean-flow p r o f i l e s  are c a l c u l a t e d  by t h e  

computer code described , i n  Sec.3, w e  s t u d y   t h e   s t a b i l i t y  

of the r e su l t i ng   f l ow by so lu t ion   o f   t he  Orr-Sommerfeld 

equa t ion   fo r   t empora l ly   g rowing   d i s tu rbances   i n   s t eady ,  

plane-parallel   two-dimensional  incompressible  f low.  There 

are three  important   approximations.made  in  t h i s  study  which 

should be e l m i n a t e d   i n   f u r t h e r  work on t h i s  problem. First, 

w e  ca lcu la te   on ly   t empora l ly   g rowing   d i s turbances ,  so w e  must 

convert  between  temporal growth and s p a t i a l  growth us ing  a 

group  veloci ty   t ransformation: l   In   our   prel iminary  calculat ions 

of t h e   s t a b i l i t y  of the  mean-flow p r o f i l e s  w e  have  been  even 

cruder :   ins tead  of us ing  the  group-ve loc i ty   t ransformat ion ,  

w e  have  transformed  using the  more r ead i ly   ca l cu la t ed   phase  

v e l o c i t y  v = w/k, where w i s  t h e  frequency of t h e  d is turbance  

and k is i ts  wavenumber i n  the  x-d i rec t ion .   For   the   k inds   o f  

d i s t rubances   under   p resent   s tudy ,  t h e  approximation of t h e  

group  ve loc i ty  by t h e  phase   ve loc i ty   should   no t   in t roduce  

e r r o r s   l a r g e r   t h a n  20%. 

Ph 

Second, by assuming the mean-flow t o  be s teady  w e  neg lec t  

possibly  very  important  phase-coherence effects which could 

s t rongly   a f fec t   g rowth  rates. We have  included  t ime-variation 

of   the mean flows  only'through the e f f e c t  of u s i n g   d i f f e r e n t  

p r o f i l e s  a t  d i f f e r e n t  times i n   t h e   e v o l u t i o n  of a wave packet .  

The j u s t i f i c a t i o n  for  the  approximation of s teady  f low is 

weak: a non-steady  flow s t a b i l i t y   a n a l y s i s   r e q u i r e s   c a l c u l a t i o n  

of the   e igenvalues  of a Floquet  theory  and i s  best done for  

the  present   problem by s o l u t i o n  of t h e  f u l l   l i n e a r i z e d  Navier- 
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Stokes  equat ions.  

The t h i r d   l i m i t a t i o n   o f   t h e   p r e s e n t   k i n d   o f   s t a b i l i t y  

a n a l y s i s  is the  assumption  that  the flow is p l a n e - p a r a l l e l  

i n  x. I n   f a c t ,   t h e  mean-flow p r o f i l e s  w e  determirie 

by the  computer  code  described  in Sec. 3 are space  varying.  

P a r t   o f   t h e   e f f e c t   o f   t h e  space v a r i a t i o n  is accounted   for  

by u s e   o f   d i f f e r e n t   p r o f i l e s   i n   t h e   s t u d y   o f   s t a b i l i t y  of 

a wave-packet. However, t h e   b e s t  way to  s t u d y   s t a b i l i t y  

of a time-varying,  space-varying f l o w  of t h e  so r t  encountered 

in   the   Bushnel l   tu rbulen t   boundary   l ayer  model is t o   s o l v e  

the  l inear ized  Navier-Stokes  equat ions  in  the channel 

0 5 x 5 L, 0 y - c H . .  This   t ask  w i l l  be  postponed t o  

f u t u r e  work on the  problem. 

The  Orr-Sommerfeld e q u a t i o n   f o r  t h e  s t reamfunct ion 

of  a l inear ized  two-dimensional   dis turbance  of  t h e  mean-flow 

profile TI (y)  i s  

with  boundary  conditiocs 

v = v ' = O  a t  y = O,H 

Here the  s t reamfunct ion is  assumed t o  have t h e  form 

(y)  ei (ax-ut)  

where a i s  t h e  wavenumber i n  t h e  x-direction  and w i s  the 

(complex)  frequency . 



The  Orr-Sommerfeld equat ion  (4.1)  wi th  (4 .2)  is 

solved by expanding  the  e igenfunct ion  v(y)  i n  a series 

of Chebyshev  polynomials  and  then  determining  the  eigenvalue 

w by means of a matrix eigenvalue  computer  program  based on 

t h e  QR a1g0r i thm. l~   This   p rocedure  is v e r y   e f f i c i e n t  and 

accura te .  

W e  use  t h e   l i n e a r   s t a b i l i t y . a n a l y s i s   o u t l i n e s  above 

to predic t   the   occur rence   o f  a b u r s t  as f o l l o w s .   F i r s t ,  

w e  calculate t h e   s t a b i l i t y   c h a r a c t e r i s t i c s  of v a r i o u s   p r o f i l e s  

a t  a f ixed  x locat ion  and  var ious  values   of   the  t ime . t .  

These   ca lcu la t ions   p roceed   un t i l  a t i m e  to is found a t  which 

t h e   p r o f i l e  is uns tab le  ( I m w  > 0 f o r  some wavenumber a I .  

From t h a t  t i m e  onwards, w e  c a l c u l a t e   t h e   a m p l i f i c a t i o n  

r a t i o  by the  formula 

Ag 
A exp I I m  w dx/c (4.3) 

where w e  u s e  the   phase   ve loc i ty  R e  w / a  as an e s t ima te  of c 

(see above).  The p r o f i l e s  whose s t a b i l i t y  is  c a l c u l a t e d  

are related i.n space-timz by t h e   r e l a t i o n  

Ax = cAt ( 4 . 4 )  

Next ,   the   Michel-Smith  cr i ter ion8  for   occurrence 

of a b u r s t  is appl ied ;  a b u r s t  i s  presumed t o  occur i f  

9 
" ( 4 . 5 )  

This   empi r i ca l   co r re l a t ion   has  worked w e l l  for a v a r i e t y  of 

t r a n s i t i o n   f l o w s ,   b u t  it is  admit tedly  very  crude and t h e  

power e' may be   ad jus ted  la ter  a f t e r  w e  get more exper ience  

with  the  present.   codes.  
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There are a number of   ref inements  of the p r e s e n t  

6 t a b i l i t y   c a l c u l a t i o n s  that  should also be  performed i n   t h e  

f u t u r e .   F i r s t ,  the l inear ized  Navier-Stokes  equat ions 

6hould be solved to accoun t   fo r   nonpa ra l l e l  and  nonsteady 

flow e f f e c t s .  Then, it may be   u se fu l  t o  estimate the  

magnitude  of  nonlinear effects and t o  use  a more realist ic 

b u r s t   c r i t e r i o n   t h a n  (4 .5 )  . 
Some modi f i ca t ions   i n   ou r   p re sen t   codes  are p o s s i b l e  t h a t  

are s ign i f i can t ly   s imp le r   t han   t he   l i nea r i zed   Nav ie r -S tokes  

calculation  mentioned  above. First, the group  ve loc i ty  

of the  waves should be used   ins tead  of the   phase   ve loc i ty .  

Second, a s p a t i a l   s t a b i l i t y   c a l c u l a t i o n   s h o u l d  be performed 

i n s t e a d  of t h e   p r e s e n t   t m e p o r a l   s t a b i l i t y   c a l c u l a t i o n s .  

T h i r d ,   t h e   e f f e c t  o f - t h e  in f low  ve loc i ty  -V imposed a t  

y =H (see Sec. 3 )  should   be   inc luded   in  the Orr-Sommerfeld 

e q u a t i o n ;   i n  fact ,  w e  h a v e   w r i t t e n   o u r   s t a b i l i t y  code t o  

account for  t h i s  l a t t e r  effect ,  b u t  it is no t   i nc luded   i n  

t h e   c a l c u l a t i o n s   r e p o r t e d   i n  Sec. 6. 
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5. ' FLAT  PLATE RESULTS 

I n  this Sec t ion ,  w e  r e p o r t  a number of  numerical 

experiments  performed t o  tune   t he   Bushne l l   t u rbu len t  

boundary  layer model for   f low  over  a f l a t  plate. First, 

i n  F i g .  1, w e  show t h e   r e s u l t s   o f ' a   n u m e r i c a l   e x p e r i m e n t  

performed t o  test the   accuracy  of t h e  Van Driest Reynolds 

o t r e s a  ( 3 . 3 )  with  B= 1 ( f u l l   s t r e n g t h )   i n   r e p r o d u c i n g  a 

turbulent   boundary  layer   mean-veloci ty   prof i le .  The c a l c u l a t i o n  

(as well as t h e   o t h e r   c a l c u l a t i o n s   r e p o r t e d   i n   t h i s   S e c t i o n )  

used 33 Chebyshev  polynomials t o  reso lve   the   boundary   l ayer  ( y )  

, d i r e c t i o n  and 257 s t agge red   g r id   po in t s  t o  r e s o l v e   t h e  downstream 

(x) d i r e c t i o n .  For the  experiment (Run 1) p l o t t e d   i n   F i g .  1, 

w e  impose the  boundary  condi t ions-p = v - 0 a t  y+ = H p. 200.  It  

is apparent  from Fig.  1, that a turbulen t   boundary   l ayer   p rof i le  

is well p rese rved   i n   evo lu t ion  from the  upstream  boundary 

a t  x = 0 t o  x+ = 200 (and  even  beyond). T h i s  c a l c u l a t i o n  

shows t h a t  t h e  ups t r eam  in f luence   e f f ec t  of t h e  downstream 

boundary a t  x+ = 600 i s  minimal -- i n   f a c t ,  no  appreciable  

upstream  influence  of t h e  boundary a t  x+ = 600 i s  d i s c e r n i b l e  

beyond x+ = 500. 

The next  set of  runs w e  performed were designed t o  

a d j u s t  t he  background  turbulence  level   constant  B i n  ( 3 . 3 )  

and  the   in f low  ve loc i ty  v a t , y +  = H, as w e l l  as t o  test  

the form  of   the   requi red   p ressure   pu lse  to achieve   reasonable  

mean v e l o c i t y   p r o f i l e s .  The goa l   o f   these   exper iments  
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Figure  1. A p l o t   o f  t h e  calculated  mean-veloci ty  
p r o f i l e s  for Run 1. 
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is t o  match the  development of turbulent   boundary  layer  

p r o f i l e s  between b u r s t s  as measured  by  Blackwelder. 

Some of   Blackwelder 's   data   for   condi t ional ly   averaged 

v e l o c i t y   p r o f i l e s   b e f o r e ,   d u r i n g  and a f t e r   t h e   p e r i o d  of 

bu r s t  formation are shown i n   F i g .  2 .  Observe  the  very  strong 

i n f l e c t i o n a l   p r o f i l e  a t  a t i m e  delay  of  -3.1 ms. This  

p r o f i l e  is s t r o n g l y   u n s t a b l e  and  gives rise t o  a b u r s t  

a s h o r t  t i m e  later. 

16 

In   F ig .  3, w e  p lo t  t h e  form  of   the  pressure  pulse  

used i n   o u r   c a l c u l a t i o n s   o f   t h e   B u s h n e l l  model. The magnitude 

o f   t h e   p u l s e  i s  chosen t o  be 3pkS,   in   agreement   wi th   Bur ton ' s  

d a t a  and to   occu r   ove r  a t i m e  period  of 25 ( i n   u n i t s  of 5 

2 v/U, The t r i a n g u l a r  form o f   t h i s   p u l s e  is an a r b i t r a r y  

cho ice ,   bu t  it i s  n o t   t o o   i n c o n s i s t e n t   w i t h   a v a i l a b l e  

exper imenta l   da ta .   In  some of the  numerical   experiments 

reported  below,  the  amplitude of t h e   p r e s s u r e   p u l s e  is  

2 . 5 ~ : ~ ~  and i n  some o thers   the   l ength   o f   the   pu lse  is  

d e c r e a s e d   t o  20.  

In   F ig .  4 ,  w e  p l o t   t h e   r e s u l t s  of a numerical 

ca lcu la t ion   us ing   the   code   descr ibed   in   Sec .  3 with  

B = 0.05  and v = 0 a t  y, = H ,  t oge the r   w i th   t he  

imposed p res su re   pu l se .  The agreement  with  the 

Blackwelder   prof i les  shown in   F ig .  2 is  not   very good. 

In   Fig.   5 ,  w e  p l o t   t h e  resu l t s  of a similar experiment 

i n  which  the  ver t ical   d imensionsion i s  t runca ted  t o  0 L y, 2 100 ,  

w i t h   t h e   p r e s s u r e   p u l s e   a p p l i e d  a t  y ,  = 100.  The agreement-with 

Blackwelder's  measurements is  even worse. We conclude  from 

t h i s  compar ison   tha t   the   p ressure   pu lse  mus t  be  imposed i n  
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Figure 3. A p l o t  of t h e  imposed pressure   pulse   a t  y = H .  The 
form of t h i s   p u l s e  is in 'good agreement w i  h that  &sured by 
Burton. 5 
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Figure  4 .  A p l o t   o f   t h e   c a l c u l a t e d   v e l o c i t y   p r o f i l e s   f o r  
Bushnel l ' s  model of the   t u rbu len t   boundary   l aye r .  T i m e  
d i f f e r e n c e s   a r e  measured from passage   of   the   peak   of   the  
adve r se   p re s su re   g rad ien t   pu l se .  The boundary  conditione 
a t  t h e   t o p  of t h e   l a y e r  are v = 0. 
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the reg ion  y+ 200, and c e r t a i n l y   n o t  so close to  the wall 

an y+ = 100. 

In   Fig.  6, we p l o t  the r e s u l t s   o f  a c a l c u l a t i o n  

r i m i l a r  to  that shown i n  F i g .  4 ,  e x c e p t   t h a t  the imposed 

in f low  ve loc i ty  a t  t h e  top of t h e   l a y e r  is v = -0.5U . 
In t h i s  case, the r e t a r d a t i o n  'due t o  the  imposed p res su re  

pulse '  is much l a r g e r   t h a n  t h a t  shown in   F ig .   4"and  is i n  

q u a l i t a t i v e  agreement wi th  Blackwelder 's   results.   Then, 

i n  Fig. 7, w e  p l o t  t h e  r e s u l t s  of a c a l c u l a t i o n  similar 

t o  the c a l c u l a t i o n s   p l o t t e d   i n  Figs. 4 and 6 ,  except  tha t  

the   i n f low  ve loc i ty  a t  t h e   t o p  of t h e  l a y e r  i s  v = -2U . 
I n   t h i s   c a s e ,   t h e   i n f l e c t i o n a l   p r o f i l e  i s  ve ry   s t rong  

and even  our  two-dimensional mean-flow code wi th  background 

* tu rbulence  model went uns tab le   near   the   peak  of the adverse 

p re s su re   g rad ien t   pu l se .  Th i s  d i f f i c u l t y  w i t h  Run 5 (shown 

i n  Fig. 7 )  is, w e  be l i eve ,   un re l a t ed  t o  some c a l c u l a t i o n a l  

d i f f icu l t ies   wi th   in te rmedia te   wavelength   compl ian t  wall 

ca l cu la t ions   r epor t ed  later.  We b e l i e v e  t h a t  t h e  breakdown 

,of Run 5 is  due t o  t h e  small value of B = 0 . 0 5 ,  so t h a t  t h e  

background  turbulence  cannot   s tabi l ize   (by  diffusion)  the 

uns t ab le  p rof i le  produced by t h e  pressure   pu lse .  

The conclusion t o  be drawn  from Figs. 4-7 is t h a t  

t h e   s t r e n g t h  of t h e   i n f l e c t i o n a l   p r o f i l e s   p r o d u c e d  by 

passage of the   p re s su re   pu l se  i s  a ve ry   s t rong   func t ion  

of the   i n f low  ve loc i ty  v a t  t h e  t o p  of t h e  boundary  layer. ' 

It seems t h a t  v 5 -0.5u g i v e s   r e s u l t s   i n   r e a s o n a b l e   q u a n t i t a t i v e  

agreement  with Blackwelder's .measurements. 
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Figure  6. Same as Figure  4 ,  excep t   t ha t   an   i n f low  ve loc i ty  
= -.5U is imposed a t  the   top   o f   the   ca lcu la t iona l   domain ,   y+=200.  
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6. COMPLIANT  WALL  RESULTS 

We have  performed several r u n s   f o r   t h e   c a l c u l a t i o n  

of m e a n '  v e l o c i t y  profiles of a turbulent   boundary  layer  

over a compliant  boundary  with  imposed w a l l  motion.  In 

a l l  the   exper iments  t o  d a t e ,  w e  have  assumed t h a t   t h e  

component of . the w a l l  motion i n   t h e   d i r e c t i o n   o f   t h e  

mean f low  vanishes:   U(x, t )  = 0. As discussed  in   Sec.3,  

the j u s t i f i c a t i o n   f o r   t h i s   a p p r o x i m a t i o n  is  t h a t   t y p i c a l  

compl ian t   boundar ies   have   suppor ts   tha t   s t i f fen   the  medium 

to la teral  deformation. Our computer   code  has   run  sat isfactor i ly  

on cases i n  which the  wavelength  of  the wall  motion was both 

very  long  and  very  short .  For example, i n   F i g .  8 ,  w e  p l o t  

t h e  results of a numer i ca l   ca l cu la t ion   fo r  a flow  over 

a compliant  boundary whose surface  motion was a s h o r t  wave, 

q+ = 5 s i n  ( 2 x +  - 30 t+) 

This  wavelength i s  a s   s h o r t  as can be reso lved  on our  

g r i d   w i t h  257. g r i d   p o i n t s   i n  x. 

We.have a l so   pe r fo rmed   s t ab i l i t y   ca l cu la t ions   fo r   t hese  

flows  over  compliant moving wal l s .  The a m p l i f i c a t i o n   r a t i o  

A/Ao is  c a l c u l a t e d   a s   i n  Sec. 4 and t h e  Michel-Smith 

c o r r e l a t i o n  i s  used t o   p r e d i c t  t h e  occurrence  of a b u r s t .  

I n  Fig. 9 ,  w e  p l o t   t h e   a m p l i f i c a t i o n  ra t io  vs  t i m e  f o r  a 

wavepacket   or iginat ing a t  x+ = 200 f o r  Runs 4 (Fig.  6 )  and 

7(Fig.8), i n   o r d e r  t o  demonst ra te   the   e f fec t   o f  a compl i an t .  

w a l l .  In   Fig.  9 ,  w e  p l o t   t h e   d a t a  t w o  ways: the   squares  

and t r i a n g l e s   i n d i c a t e   t h e   a m p l i f i c a t i o n   f a c t o r s   o b t a i n e d  
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Figure  9. A p l o t   o f   t h e . a m p l i f i c a t i o n   r , a t i o s   o f   t h e -   m o s t  
uns t ab le   d i s tu rbanceso f   t he   boundary   l aye r   p ro f i l e s   o f  Runs 4 
and 7,  which are i d e n t i c a l   e x c e p t   t h a t  Run 7 has a short   wavelength 
imposed w a l l  motion.  Results are p r e s e n t e d   f o r   d i s t u r b a n c e s  
fo l lowing   the   wavepacket   and   for   d i s turbances   f ixed  a t  x+ = 200. 
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by 1 o c a l . s t a b i l i t y   a n a l y s i s   f o l l o w i n g   t h e  most uns t ab le  

wave using a phase   ve loc i ty   t r ans fo rma t ion ;   t he  crosses 

and circles i n d i c a t e   t h e   a m p l i f i c a t i o n   f a c t o r s   o b t a i n e d  

a t  a f i x e d   l o c a t i o n  x+ = 200, no t   fo l lowing   t he  wave. 

The e f f e c t   o f   t h e  w a l l  motion i n  dec reas ing   t he  

growth rate of   d i s turbances   in   the   boundary   l ayer  i s  

a p p a r e n t   f r o m   t h e   r e s u l t s   p l o t t e d   i n   F i g .  9 both  fol lowing 

t h e  wave and f i x e d   i n   s p a c e .  A l s o ,  the  growth rates obtained 

fo l lowing   the  wave are l a r g e r   t h a n   t h o s e   o b t a i n e d   f i x e d   i n   s p a c e ,  

apparently  because when the   packe t  moves it s t a y s   i n  a reg ion  

o f   l a rge   ampl i f i ca t ion  ra te  f o r  a longer  t i m e  and  does  not 

qu ick ly   encounter   the   favorable   g rad ien t   por t ion   o f   the  

p re s su re   pu l se .  

S i m i l a r   c a l c u l a t i o n s   f o r  a long  wavelength  wall  motion 

(wavelength = length  of   pressure  pulse)   indicate   no  drag 

reduction  (and  might  indicate  drag  enhancement).  

Unfor tuna te ly ,   the   wavelengths   ind ica ted   in  Run 7 are 

probably much t o o   s m a l l   t o  be  achieved by  any p r a c t i c a l  

compliant w a l l .  Since  long  wavelengths seem t o  be   de - s t ab i l i z ing  

on the  boundary layer   whi le   shor t   wavelengths  seem t o  be 

s t a b i l i z i n g ,  it seems tha t   t he   goa l   o f   compl i an t   wa l l   d rag  

reduct ion  should  be  achieveable   provided  that   dynamical ly  

l ight   mater ia ls   with  short   wavelength  response  can  be  found.  

I n  o rde r  t o  quant i fy   the   longes t   wavelengths   tha t  seem 

t o  permi t   d rag   reduct ion ,  w e  began a series of  numerical  

experiments   with  the  code  descr ibed  in   Sec.  3 wi th  imposed 

wavelengths  of  order x+ = 100.  Unfortunately,  w e  found- 

a d i f f i c u l t   n u m e r i c a l   i n s t a b i l i t y   i n   t h e  mean flow  code so 
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‘no reliable re su l t s   cou ld   be   ob ta ined .  The i n s t a b i l i t y  

does n o t  seem t o  be similar t o  tha t  of Run 5 a t  l a r g e  times 

where t h e   p r o f i l e s  become unstable   due t o  l a r g e   i n f l e c t i o n .  

The i n s t a b i l i t y   i n  t he  p r e s e n t  cases occur  too ear!.y for  

t h i s  and seem t o  be related t o  an interact ion  between t h e  

imposed l a rge - sca l e   p re s su re   pu l se  and the w a l l  motion,  perhaps 

ref lect ing  an  improperly  posed mathematical problem where 

both  p and the  i n f l o w   v e l o c i t y  are s p e c i f i e d  as boundary 

cond i t ions  a t  the  top of the  layer .   This   problem is under 

a c t i v e   i n v e s t i g a t i o n   a n d  w e  hope to reso lve  it soon. 

Since  no  evidence of any   numer ica l   ins tab i l i ty  is found 

i n  any of t h e   r e s u l t s   p l o t t e d   i n  Figs .  1-9, w e  f i n d  no 

evidence t h a t  these r e s u l t s   s h o u l d  be i n  e r r o r .  However, 

it is apparent  t ha t  an  extensive series of numerical  

experiments  should be performed t o  v e r i f y  these resu l t s .  
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7 .  SUMMARY 'AND CONCLUSIONS 

We have  developed a set of computer  codes t o  test 

Bushnell 's   boundary  layer model. One code  computes t h e  

evo lu t ion  of mean v e l o c i t y   p r o f i l e s   d u r i n g   t h e ' p e r i o d  

between b u r s t s  as forced  by  an  imposed l a rge - sca l e  

pressure pulse  due t o  earlier bursts.   Another  code 

computes t h e  local s t a b i l i t y   c h a r a c t e r i s t i c s  of t hese  

computed p r o f i l e s .  The programs  use  Chebyshev  polynomials 

to  r e so lve   t he   boundary   l aye r   (y )   d i r ec t ion  and a s taggered  

g r i d  of mesh p o i n t s  t o  r e so lve   t he  x d i rec t ion .   Typ ica l ly ,  

257 g r i d   p o i n t s  and 33 Chebyshev  polynomials  are  used 

i n  the  computations.  

By carefu l ly   choos ing   the   shape  of t h e  imposed pressure  

pulse ,   the   level   of   background  turbulence,   the   height   of   the  

computat ional   region,  and e spec ia l ly   t he   i n f low  ve loc i ty  a t  t h e  

top  of   the  boundary  layer ,  w e  are ab le   to   ach ieve   reasonable  

agreement  with  Blackwelder 's   measured  velocity  profiles 

dur ing   the   burs t   p rocess  on a f l a t   p l a t e .  

S t a b i l i t y   c a l c u l a t i o n s  of t h e   r e s u l t i n g  mean v e l o c i t y  

p r o f i l e s  show tha t   compl i an t  moving walls with  short   wavelengths  

can   have   an   apprec iab le   e f fec t   in   s tab i l iz ing   the   boundary  

l a y e r   t o   f u r t h e r   b u r s t s .  On the  other  hand,  long  wavelength 

pall.motions do n o t  seem t o  limit the  burst ing  process   and,  

therefore ,   p robably   do   no t   g ive   s ign i f icant   d rag   reduct ion .  

We are cu r ren t ly   engaged   i n   t ry ing   t o   ob ta in  results 

concerning.intermediate  wavelength w a l l  mo t ions .  However, 

an i n s t a b i l i t y   a p p a r e n t l y  due t o   t h e  boundary  conditions  imposed 

a t  t h e   t o p  of the   l ayer   has   p revented   us   f rom  obta in ing   resu l t s  
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for these cases. 

Future   s tudies   of   Bushnel l ' s   boundary  layer  model 

should  address  the following  problems : 

(i) intermediate   wavelength w a l l  motions; 

(ii) more a c c u r a t e   s t a b i l i t y   c a l c u l a t i o n s   u s i n g  a 

l i n e a r i z e d   s o l u t i o n  of the  Navier-Stokes  equations; 

( i i i l i n v e s t i g a t i o n   o f   t h e   e f f e c t s  of d i f f e r e n t   k i n d s  

of w a l l  motions,   including  possible   motion  of   the w a l l  i n  i t s  

own plane  ; 

( i v )  a complete i n v e s t i g a t i o n  of d i f f e r e n t   k i n d s  of boundary 

condi t ions  on t h e  mean flow model  and more ex tens ive  tests 

of  the  background  turbulence model. 
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